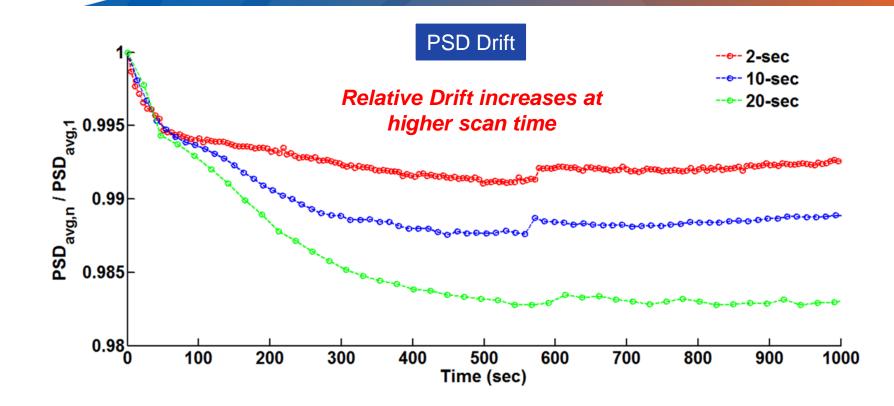
Micro Sensor Background Measurement Frequency "Calibration"



Background Measurement Need

- Absorbance is measured by ratioing Sample PSD to Background PSD, so the instrument spectral response is compensated
- Frequent measurement of background is recommended to avoid effect of instrument response drift
 - Scanner response drift
 - Self-Heating (Warm-up) Effect
 - No environmental changes (Ambient Temperature, Humidity, ...), variations will come from self heating/warm-up of the scanner (Sensor + Other electronics in scanner)
 - It depends on light source usage frequency and electronics operation inside the scanner (always on or off)
 - Environmental Changes (Ambient Temperature, Humidity)
 - Self-correction (internal sensor calibration) should be applied and new background is needed
 - Highly unlikely in case of a salon with controled temperature
 - Can be solved using some DSP in chemometrics (SNV or baseline correction algorithms)

Self-Heating (Warm-up) Effect Overview Example in Certain Conditions

- Continuous measurements
- Ratioing measurements to first measurement
- Baseline correction (SNV simplest) can solve this issue

Proposed Experiments

Characterization of self-heating

- Characterization of baseline drifts considering frequency of usage (how many scans per hour? Separation between measurements?)
- Decide on: start-up initialization time needed

Effect of self-heating on prediction error

- Multiple measurements of a standard hair sample during self-heating period
- Multiple measurements of a standard hair sample across a day with different time separation between measurements
- Decide if we need for
 - Start-up time initialization time needed
 - Working on baseline correction algorithm

Thank you

neospectra